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An evolutionary battle-of-the-sexes game is proposed to model the opinion formation on networks. The
individuals of a network are partitioned into different classes according to their unaltered opinion preferences,
and their factual opinions are considered as the evolutionary strategies, which are updated with the birth-death
or death-birth rules to imitate the process of opinion formation. The individuals finally reach a consensus in the
dominate opinion or fall into �quasi�stationary fractions of coexisting mixed opinions, presenting a phase
transition at the critical modularity of the multiclass individuals’ partitions on networks. The stability analysis
on the coexistence of mixed strategies among multiclass individuals is given, and the analytical predictions
agree well with the numerical simulations, indicating that the individuals of a community �or modular� struc-
tured network are prone to form coexisting opinions, and the coexistence of mixed evolutionary strategies
implies the modularity of networks.
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I. INTRODUCTION

Modeling the dynamics of opinion formation on a net-
work is an important means to investigate the relationship
between dynamical processes and topologies of complex net-
works. Opinion formation is comprehensibly achieved
through the mutually convincing process among individuals
of different opinions. In the traditional models of opinion
formation, including the voter model, the Sznajd model, the
Galam’s majority rule, and so on, the individuals have no
distinction between different opinions and/or the interactions
of the opinion update in convincing processes are relatively
simple and deterministic �1�.

Game theory provides a versatile framework to model the
interactions between adaptive individuals, where the indi-
viduals adapt their strategies/opinions to convince �or to be
convinced by� other individuals’ strategies and opinions to
maximize their fitness or payoff �2�. In this paper, an evolu-
tionary battle-of-the-sexes game �BSG� �3� is proposed to
model the opinion formation on a network, where the diver-
sity of individuals’ opinion preferences are considered as
corresponding payoff matrices of BSG and their factual opin-
ions evolve with the evolutionary game strategies. During
the convincing process of opinion formation, we consider
two updating rules of the factual opinions: the birth-death
�BD� process and the death-birth �DB� process, where the
payoff- �fitness-� dependent selection is incorporated to
mimic the persuading interactions among individuals.

Our main concern in this paper is the evolutionary-game-
based opinion formation on the networks with community
�or modular� structures �4,10�. We analytically and numeri-
cally show that not only the individuals’ different preferences
as well as their preference degrees �which are represented by
the parameters of payoff matrices in the game� and also the
modular network structure of individuals �whose modularity

is partitioned according to their preferences� play a key role
in the process of opinion and strategy formation during the
game evolution. The individuals’ factual opinions finally
reach a consensus in the unique dominant opinion �the opin-
ion dominance phase�, or fall into �quasi�stationary fractions
of coexisting mixed opinions �the opinion coexistence phase�
whose phase transition criticality is determined by the coex-
istence stability of evolutionary strategies. In particular, the
opinion coexistence phase reveals the community structural
�or the modular� characteristics of network topology, where
almost individuals’ factual opinions are consistent with their
preferences and partitioned into clusters of mixed coexisting
opinions as different network communities.

The rest of this paper is organized as follows. In Sec. II
we first make a brief introduction to the standard BSG as
well as the generalized BSG on networks and formulate our
model with two evolutionary BD and DB rules. Next, we
give a general theoretical analysis in Sec. III and make the
numerical verifications on the constructed networks with tun-
able community strengths in Sec. IV, which illustrate the
dependence of phase transition criticality on the modularity
network structure. Finally, we conclude the whole work in
Sec. V.

II. MODEL DESCRIPTION

The standard BSG is an illustrational game to describe the
convincing process �3�. One couple plan to go to the same
event together, but each prefers a different event; i.e., they
hold different opinions at the beginning: the wife prefers the
opera while the husband is more willing to watch a boxing
match. Mathematically, a BSG payoff matrix is written as

opera boxing

opera �2x ,x� �0,0�
boxing �0,0� �x ,2x�

where x is a positive number, which means if the wife con-
vinces the husband of seeing the opera, then the wife will
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receive a payoff 2x and the husband will also receive x;
similarly, the husband will receive the higher payoff 2x than
the wife if the husband convinces his wife contrarily. How-
ever, if they cannot convince each other and go to different
events, both of them will get nothing. The BSG provides a
game theoretic solution to the opinion formation: two indi-
viduals hold different preferences but finally reach a consen-
sus in their opinions and strategies, since both �opera, opera�
and �boxing, boxing� are strict Nash equilibria of the BSG.

We consider the generalized l-strategy two-person BSG
with the game strategies representing the finite different l
opinions. Each individual prefers one of l candidate strate-
gies and opinions and keeps unaltered. Formulate l different
opinion preferences with payoff matrices Ai= �ast

i �l�l, 1� i
� l, respectively, where ast

i represents the payoff of an indi-
vidual with preference of ith opinion to select opinion s
when meeting another individual that selects opinion t. Thus
Ai is a non-negative diagonal matrix, whose strictly largest
diagonal entry is located at the ith row and ith column. If the
consensus of the factual opinions is reached in accordance
with one individual’s preference, then he will get the maxi-
mum payoff or receive a payoff due to his compromise to
follow his opponent’s opinion. If the two individuals select
different opinions as their respective strategies, both of them
receive nothing.

We now put a step forward to play the game among a
population of individuals, where the population structure is
generally described by the network of contacts in the graph
theory. Consider the evolutionary BSG on a directed network
G with n vertices �individuals� and m links, where the indi-
viduals are partitioned into k �1�k� l� classes due to their
opinion preferences. We introduce the class-adjacency-
strength matrix of G to describe the network structure of
individual-class-leveled connections. We first construct a
renormalized network C as follows: replace each class of
individuals in the original network by a single vertex and
map each link in the original network to a new link between
the corresponding vertices of C. Thus C is a k-vertex net-
work containing self-loops and multilinks. Define the class-
adjacency-strength matrix W= �wij�k�k as the normalized ad-
jacency matrix of C, where wij is the probability that an
individual of class i meets an individual of class j along a
randomly selected link.

In every round, each individual plays the BSG with his
every out-reached neighbor and receives a payoff by averag-
ing over all rewards from the game with his neighbors. The
average payoff of individual with strategy j of class i is
calculated as

ui
j = �

s=1

l

ajs
i �

t=1

k

witxt
s, �1�

where xi
j is the fraction of individuals with strategy j in class

i and the sum �t=1
k witxt

s is the expected frequency of individu-
als with strategy s who play the game with individuals of
class i under the mean-field approximation. Therefore the
average payoff ui

j is regarded as the corresponding payoff

that one individual receives from one opponent of the mixed
strategies with frequencies �t=1

k witxt
s.

After one round of game playing, the convincing process
takes place between a pair of individuals along a directed
link �vi ,v j� pointed from vi to v j: vi convinces v j, and v j is
convinced by vi in next round. Analogous to the BD-DB
process in the population dynamics �5�, it is inclined to select
a convincing individual vi with a high average payoff. We
consider the following two payoff-dependent selection rules.

�i� BD rule: the individual vi is selected with the probabil-
ity proportional to his averaged payoff. Then a randomly
selected out-reached neighbor of vi is considered to be sub-
stituted by the opinion of individual vi.

�ii� DB rule: a randomly selected individual vi updates his
strategy as the coordinating opinion of one of his in-directed
neighbors that is selected with the probability proportional to
his averaged payoff.

Notice that the interacting graph and updating graph are
unnecessarily the same �6�; i.e., an individual can play the
game with a part of individuals as his interacting-neighbor
set and replace his opinion and strategy according to another
part of individuals as his updating-neighbor set, where the
two sets are allowed to be different on some occasion. The
difference between the interacting and updating graphs could
result in complex asymptotic behaviors. Therefore we as-
sume the interacting graph and the updating graph are not
necessarily the same in the rest part of this paper.

III. ANALYTICAL RESULTS

Denote the interacting and updating graphs by G and G�
�corresponding to the class-adjacency-strength matrices W
and W�, respectively�, where n individuals are partitioned
into k classes. In each class i, the population size is denoted
by ni ��i=1

k ni=n� and ni
j is the number of individuals in class

i selecting the strategy/opinion j �� j=1
l ni

j =ni�, letting the frac-
tion of individuals of class i be pi=ni /n.

We first consider the case of the generalized BSG with the
BD updating rule. In the birth step, recall the fraction of
individuals with strategy j in class i, xi

j =ni
j /ni, and thus an

individual with strategy h of class t is selected with probabil-
ity

rt
h =

xt
hut

h

�
v=1

k

pv�
s=1

l

xv
suv

s

=
xt

hut
h

ū
,

where ū=�v=1
k pv�s=1

l xv
suv

s is the average payoff of all indi-
viduals. In the death step, an individual with strategy j of
class i is randomly selected to follow the strategy h with
probability xi

j�t=1
k wit�rt

h, where W�= �wij� �k�k is the class-
adjacency-strength matrix of the updating network and
�t=1

k wit�rt
h indicates the probability that an individual of class

i is a randomly selected neighor of an individual with strat-
egy h. The increment of xi

j is due to the process of replacing
a non-j-strategy individual of class i by strategy j, and the
decrement of xi

j is due to replacing a j-strategy individual of
class i by nonstrategy j. Therefore, we have the rate equation
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ẋi
j = �

h=1

l

�1 − � j,h�xi
h�

t=1

k

wit�rt
j − �

h=1

l

�1 − � j,h�xi
j�
t=1

k

wit�rt
h

= �
h=1

l

xi
h�

t=1

k

wit�rt
j − �

h=1

l

xi
j�
t=1

k

wit�rt
h

= �
t=1

k

wit�rt
j − xi

j�
t=1

k

wit��
h=1

l

rt
h = �

t=1

k

wit��rt
j − xi

j�
h=1

l

rt
h� , �2�

where �i,j is 1 if i equals j and 0 otherwise. It is easy to
verify the equilibria �xi

j�* to satisfy

�
t=1

k

wit��rt
j* − xi

j*�
h=1

l

rt
h*� = 0. �3�

One obvious equilibrium yielded from rt
j −xi

j�h=1
l rt

h=0 is a
homogeneous strategy distribution for all the classes of indi-
viduals; i.e., for each strategy j, the fraction of strategy j are
identical among any class of individuals. Omitting the sub-
script index which stands for an individual’s class, we have
xj =rj and uj = ū. Therefore, the homogeneous strategy distri-
bution �if the solution exists� shows that individuals with any
strategy of any class receive the equal average payoff.

We next analyze the stability of the equilibrium �xi
j�* of

Eq. �2�. We consider any perturbation added to the equilib-
rium due to the strategy updating and give a stability condi-
tion of stationary strategy distribution around the equilib-
rium.

Rewrite Eq. �2� as

ẋi
j = �

t=1

k

wit�rt
j − xi

j�
t=1

k

wit��
h=1

l

rt
h � − ci�xi

j − qi
j� , �4�

where ci=�t=1
k wit��h=1

l rt
h and qi

j =�t=1
k wit�xt

jut
j /�t=1

k wit��h=1
l xt

hut
h.

Assume that the stationary strategy distribution is established
and those individuals of class i with strategy h follow the BD
rule to adopt strategy j, where the updating of the individual
brings the same increment and decrement of xi

j and xi
h with

the quantity 1
ni

. Since each payoff matrix Ai is non-negative,
ci�0 holds deterministically. To decay all such a pair of
perturbations as �dxi

j ,−dxi
h�, for any i, j, and h at the equi-

librium �xi
j�*, it requires

�qi
j

�xi
j −

�qi
j

�xi
h � 1. �5�

Next, we discuss the DB updating rule in a similar way
briefly. The decrement of xi

j in the DB process is due to
replacing the randomly selected individual of class i with
strategy j, and the increment of xi

j is due to the random
selected individual with strategy j as a neighbor of the indi-
vidual of class i. Recalling that pi is the fraction of individu-
als of class i that equal the probability of being randomly
selected in the birth step, we write the rate equation of DB
process as

ẋi
j = − pi�xi

j −

�
t=1

k

wit�xt
jut

j

�
t=1

k

wit��
h=1

l

xt
hut

h	 = − pi�xi
j − qi

j� .

The stationary equilibria also satisfy xi
j*=qi

j, where qi
j is

defined as the same as in Eq. �4�. Note that pi is positive
constant for a given population; thus, the stability condition
can be yielded similarly as Condition �5�.

A. Case of common preference BSG

We first consider the simplest case of the population hav-
ing the common preference in the generalized BSG, where
the class number k=1. Denote the payoff matrix A
=diag�a1 , . . . ,al�, and assume the rescaled payoff matrix en-
tries satisfy � j=1

l 1 /aj =1. Here, the superscript indices of the
parameters standing for the individual classes are omitted for
simplification. We have the coexisting opinion distribution

x*= �1 /a1 , . . . ,1 /al� and qi=aixi
2 /� j=1

l ajxj
2. Therefore 


�qi

�xi

−
�qi

�xj

x*=2�1, which indicates the instability of the coexist-

ing opinions.
Consider the consensus opinion equilibrium x*

= �0, . . . ,0 ,1 ,0 , . . . ,0� with only one entry being 1 and the
other entries being 0, which means that the corresponding
opinion is dominant among the whole population and
adopted by all individuals as their final factual opinion. One

can directly verify that 

�qi

�xi
−

�qi

�xj

x*=0�1 to suffice the stabil-

ity condition of the stationary distribution. The consensus of
factual opinions of a population of well-mixed homogeneous
individuals shows the population structure trivially consti-
tutes one community as a whole. Provided that the consensus
of opinion formation is reached in the nonpreferred one
�whose corresponding diagonal entry is not the largest�, the
stationary distribution for a consensus opinion is not the glo-
bally optimum in the sense of maximizing the game utility,
but the consensus opinion distribution has a locally stable
optimal structure. Actually, the �quasi�stationary opinion dis-
tribution is determined by the states of the initial opinions
and the opinion with the maximum payoff under the initial
states will convince all other opinions when the network
game evolves. Therefore, if the initial random opinion distri-
bution is uniform, the preference opinion will be finally
formed. If more than one opinion has equal payoff, there
exist bistable stationary opinion distributions. In realizations
of numerical simulations, owing to the randomness of
BD-DB process, the stationary distribution could be driven
away from the equilibrium point due to stochastic noises in
the payoff-dependent selection.

B. Case of bipreference BSG

We next consider the case of class number k=2; i.e., there
exist two opinion preferences among the individuals on the
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network. Assume the interacting and updating graphs G and
G� with the class-adjacency-strength matrices

W = �1 − p1 p1

p2 1 − p2
� and W� = �1 − p1� p1�

p2� 1 − p2�
�

and the payoff matrices for the two classes,

A1 = �b1 0

0 1 − b1
� and A2 = �1 − b2 0

0 b2
� ,

where b1 and b2 �larger than 0.5� stand for the preference
degrees of classes 1 and 2, respectively. Due to the normal-
ized conditions xi

1+xi
2=1 for any class i, we denote by x1 and

x2 the fraction of individuals with the first opinion of each
class for simplicity. Substituting the above-mentioned pa-
rameters and Eq. �1� into Eq. �4�, we have

q1 =
A1x1

2 + B1x1x2 + C1x2
2

D1x1
2 + E1x1x2 + F1x2

2 + G1x1 + H1x2 + I1
,

q2 =
A2x1

2 + B2x1x2 + C2x2
2

D2x1
2 + E2x1x2 + F2x2

2 + G2x1 + H2x2 + I2
,

where

A1 = b1�1 − p1��1 − p1��, A2 = b1�1 − p1�p2�,

B1 = b1p1�1 − p1�� + �1 − b2�p2p1�,

B2 = b1p1p2� + �1 − b2�p2�1 − p2�� ,

C1 = �1 − b2��1 − p2�p1�, C2 = �1 − b2��1 − p2��1 − p2�� ,

D1 = �1 − p1��1 − p1��, D2 = �1 − p1�p2�,

E1 = p1�1 − p1�� + p2p1�, E2 = p1p2� + p2�1 − p2�� ,

F1 = �1 − p2�p1�, F2 = �1 − p2��1 − p2�� ,

G1 = − �1 − b1��2 − p1��1 − p1�� − b2p2p1�,

G2 = − �1 − b1��2 − p1�p2� − b2p2�1 − p2�� ,

H1 = − �1 − b1�p1�1 − p1�� − b2�2 − p2�p1�,

H2 = − �1 − b1�p1p2� − b2�2 − p2��1 − p2�� ,

I1 = �1 − b1��1 − p1�� + b2p1�, I2 = �1 − b1�p2� + b2�1 − p2�� .

�6�

One can directly verify two consensus opinion distribu-
tions by x1

*=x2
*=1 or x1

*=x2
*=0, and another stationary equi-

librium is implied by xi=qi �the equation set is cubic�, in
terms of which the stability condition is reduced to

�qi

�xi
�

1
2 .

In more general cases, solving xi
j =qi

j yields the possible
stationary distributions as implicit functions of the payoff
matrices and the class-adjacency-strength matrices of
interacting-updating graphs. We therefore numerically solve
the rate equation and use Monte Carlo simulations of the
BD-DB processes to verify the theoretical analysis. Note that
the BD-DB updating rules yield identical stationary distribu-
tions �but in different time scales�; therefore, in the next
section we only visualize the numerical simulation results
with the DB rule.

IV. NUMERICAL SIMULATIONS

We consider a simple illustrational network model pre-
serving the numbers of vertices and links with tunable class-
adjacency-strength matrices �7�, where the individuals are
partitioned into two equal-sized classes. The individuals pre-
fer two different opinions, but with an identical preference
degree, and randomly select their factual opinions at the ini-
tial time. At every time step, each individual plays one round
of the BSG with his neighbors of the interacting graph and
receives his payoff. Then one individual is picked, and his
strategy is updated according to the DB rule among the
population on the updating graph �6�. As shown in Fig. 1, we
calculate and record the time series of fraction x1 and x2
�corresponding to the individuals in classes 1 and 2, respec-
tively, who prefer the first opinion� in three simulation paths.
The results are obtained by the agent-based evolutionary
game on the constructed original networks, which agree well
with the solution to the rate equations as analytically pre-
dicted on the corresponding renormalized networks �the dot-
ted line in Fig. 1�.

To verify the coexistence stability condition of the mixed
opinions, we substitute the parameters �of Fig. 1�a�� p1= p1�
= 1

13, p2= p2�= 1
16, and b1=b2= 3

4 into Eq. �6� and have

q1 =
0.6391x1

2 + 0.0545x1x2 + 0.0180x2
2

0.8521x1
2 + 0.0758x1x2 + 0.0721x2

2 − 0.4474x1 − 0.1295x2 + 0.2885
,

q2 =
0.0433x1

2 + 0.0183x1x2 + 0.2197x2
2

0.0577x1
2 + 0.0634x1x2 + 0.8789x2

2 − 0.0740x1 − 1.3635x2 + 0.71875
.

LANG CAO AND XIANG LI PHYSICAL REVIEW E 77, 016108 �2008�

016108-4



Therefore the coexisting opinion distribution is x1
*=0.9129

and x2
*=0.0609. One can directly verify that the stability con-

ditions
�q1

�x1
=0.2624�

1
2 and

�q2

�x2
=0.1866�

1
2 hold. And for the

other cases of Figs. 1�b� and 1�c�, the stable stationary dis-
tribution is x1

*=x2
*=0, whose stability condition can be veri-

fied similarly.
One of our main concerns is finding the correlation be-

tween the population topological structures and opinion dy-
namical behaviors, where the coexistence of mixed opinions
is directly affected by the modularity �community� of net-
work structure among the multiclass individuals. To quanti-
tatively describe the strength of community structure for a
given partition of multiclass individuals into network mod-
ules, following the first definition of modularity introduced
by Newman et al., we adopt the modularity M of the vertex
partition on a directed network defined as �9�

M = �
c=1

k � lc

m
− �dc

m
�2� , �7�

where k is the number of classes, m is the number of the
links in the network, lc is the number of links connecting the
vertices in class c, and dc is the sum of out-degrees of the
vertices in class c. M=0 indicates a random partition of
vertices, and a large modularity M for a given individual
partition shows the densely clustering community structure
of congeneric individuals that hold the same preference. Us-
ing the tunable community-strength �noted by class-
adjacency-strength matrices W� directed network model �7�,
we construct networks with

W = �1 − p1 p1

p2 1 − p2
� ,

whose modularity is directly correlated with the parameters
p1 and p2 in a very simple linear form as M= 1

2 −
p1+p2

2 �9�.
As shown in Figs. 1�a� and 1�b� where the modularity

M=0.430 and 0.397, respectively, the final opinion distribu-
tions with different parameters p1 and p2 fall into the opinion

FIG. 2. The order parameter � �the percentage of satisfactory
individuals whose factual opinions are consistent with their prefer-
ences� as a function of modularity M. The class number k=2, the
population sizes in each class n1=n2=100, and the preference de-
grees b1=b2=0.75. Each data point is obtained by averaging 1000
different realizations.

(b)

(a)

(c)

FIG. 1. �Color online� The opinion formation implemented by
the evolutionary BSG with the DB updating rule on the networks
with two equal-sized classes of individuals. The plotted curves are
the time series of fractions of opinion 1 among the individuals in
class 1 �blue boxes� and class 2 �red circles�, respectively, which fit
the analytical prediction �dotted lines� well. The class-adjacency-
strength matrices and modularities of the interacting and updating

graphs are �a� W= � 12 / 13

1 / 16

1 / 13

15 / 16 �, M=0.430; �b� W= � 6 / 7

1 / 16

1 / 7

15 / 16 �,
M=0.397; �c� W= � 3 / 4

1 / 16

1 / 4

15 / 16 �, M=0.344. Here, the interacting

and updating graphs are identical. Each class of individuals �whose
population size n1=n2=100� has the preference degree b1=b2

=0.75. At every step, the data point is averaged over ten rounds of
realization of the BSG. The analytical prediction is yielded from the
numerical solution to the corresponding rate equations with a
proper integral step scale 1 /nl, whose growth or decay rate is
equivalent to the average increase or decrease of xi

j in one simula-
tion step under the DB update.
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coexistence phase and dominance phase, respectively. As ex-
pected, the relative lowly clustering connections between
congeneric individuals �whose strength can be noted by p1
and p2, respectively� are easily convinced by others during
the process of opinion formation.

To observe the phase transition of opinion consensus and
coexistence, we introduce an order parameter � denoting the
percentage of individuals who factually hold the opinions
consistent with their preferences when the �quasi�stationary
opinion distribution is reached:

� =
1

n
�
i=1

n

� f i,pi
, �8�

where f i is the factual opinion of the ith individual and pi is
his preference. If �=1, then all the individuals hold their
respective preferences satisfactorily.

We first consider the opposite-structured case, where two
classes of individuals have the equal-densely-clustering com-
munity structures with connection strengths p1= p2. Denote
the class-adjacency-strength matrix of the interacting and up-
dating graphs by

W = �1 − p p

p 1 − p
� ,

and thus the modularity M= 1
2 − p. Varying the tunable pa-

rameter p from 0 to 1 to observe the order parameter �, we
find there exists a critical point Mc
0.28 that separates the
opinion coexistence and dominance phases: As shown in Fig.
2, when M�Mc, � remains constant around 0.5 approxi-
mately, which shows that one opinion overwhelms the other,
and the coexistence of different opinion clusters does not
occur. When M�Mc approaching the upper bound 0.5, the

(b)

(a) (c)

(d)

FIG. 3. �Color online� The phase diagrams for opinion formation on the plane of parameters p1 and p2 in class-adjacency-strength
matrices. The class number k=2, and the population size n1=n2=100. The preference degrees for each class in the BSG payoff matrices: �a�
and �c� b1=b2=0.75; �b� and �d� b1=0.80, b2=0.75. For �a� and �b�, the interacting and updating graphs are identical, and for �c� and �d�, the
updating graph is the reverse of the interacting graph, where all the links’ directions are reversed.
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modular feature of congeneric individuals becomes distinct
gradually, the congeneric individuals constitute a community
of the network, and their preferred opinions can be sustained
and coexist with others. Particularly, M=0.5 indicates that
the network becomes two isolated communities correspond-
ing to the two classes of individuals and �=1 shows a com-
plete satisfaction that each individual can adopt the prefer-
ence opinion, respectively.

We next consider the general case of a network with an
arbitrary class-adjacency-strength matrix

W = �1 − p1 p1

p2 1 − p2
� ,

where p1 and p2 constitute the unit square on the parameter
plane for the phase transition of opinion formation. As illus-
trated in Fig. 3, the final factual opinion distribution has
three phases: all individuals reach a consensus in opinion 1
�and 2�, and the mixed opinions coexist, which correspond to

three phases: “opinion 1 �and 2� dominant phase” and “co-
existence phase.” Notice that the coexistence phase lies com-
monly in the area near the origin of the parameter plane,
where both p1 and p2 are small and the modularity is rela-
tively large, implying that the highly modular network struc-
ture of congeneric individuals is prone to form coexisting
opinions. With the identical interacting and updating graphs,
we denote the critical values of p1 and p2 separating the
coexistence phase and the opinion 1 �or 2� dominant phase
by p1

c1 and p2
c1 �or p1

c2 and p2
c2�. As shown in Figs. 3�a� and

3�b�, p1
c1 �or p2

c2� is an increasing function of p2
c1 �or p1

c2�,
which indicates an oppositional relationship between the co-
existing noncongeneric individuals: if one class of individu-
als increase the strength of their inner connections, the other
class of individuals also need to enhance their community
strength to maintain the coexistence and avoid being con-
vinced. Similar is the relationship between the critical values
p1

12 and p2
12 to separate the opinion 1 and 2 dominant phases.

But when individuals follow different interacting and updat-

(b)

(a) (c)

(d)

FIG. 4. �Color online� The correlation between the preference degree and the factual opinion distribution. The areas of opinion coexist-
ence or dominance phases in the phase diagram are utilized to characterize the effects of preference degrees on the transition criticality of
opinion formation. The areas of the coexistence phase region are color-coded in the right panel of �a� and �c�; The areas of the opinion 2
dominant phase region are color coded in the right panel of �b� and �d�. The class number k=2, and the population size n1=n2=100. For �a�
and �b� the interacting and updating graphs are identical, and for �c� and �d� the updating graph is the reverse of the interacting graph.

MIXED EVOLUTIONARY STRATEGIES IMPLY… PHYSICAL REVIEW E 77, 016108 �2008�

016108-7



ing connections, as a demonstration given in Figs. 3�c� and
3�d�, for example, the above-mentioned relationship could be
broken and p1

12 has an extremely complicated dependence of
p2

12, which shows a complexity of the effects of topological
structures on the dynamical phenomena on networks.

As shown in Figs. 3�a� and 3�b�, the individuals’ prefer-
ence degrees lead to different phase diagrams. In the case of
two classes with an identical preference degree, the phase
diagram is symmetrical with respect to the line p1= p2. En-
hancing the preference degree of one opinion, we observe
that the region of the corresponding opinion’s dominant
phase enlarges. To visualize and describe the effect of opin-
ion preference degree on the opinion formation, with differ-
ent preference degrees have we compared the area of phase
regions in the above-mentioned phase diagrams on the p1-p2
parameter plane. We observe two classes of individuals with
the preference degrees b1 and b2 varying from 0.5 to 1, re-
spectively, and plot the areas of the coexistence phase region
�in Figs. 4�a� and 4�c�� and opinion-2-dominant phase region
�in Figs. 4�b� and 4�d�� with color-coded indication. The
larger the difference between the preference degrees is, the
more apt the multiclass individuals are to reach a consensus
in the dominant opinion. We find that the strictly equal pref-
erence degrees obviously avail to the coexistence of mixed
opinions, as shown in Figs. 4�a� and 4�c�. Figures 4�b� and
4�d� reveal an approximately bilinear correlation between the
preference degrees and the dominant phase area, and the area
of the dominant phase is positively linearly correlated with
the preference degree of the individuals who prefer it and

negatively linearly correlated with the individuals who prefer
the other.

V. CONCLUSION

To summarize, in this paper we have explored the opinion
formation on networks, where individuals are classified ac-
cording to their preferences and their interactions are char-
acterized by two-person games with different payoff matri-
ces. We have discussed the opinion formation among a
population of individuals with the birth-death or death-birth
updating rules in the evolutionary game theory literature and
focused our main attention on the phenomenon of coexisting
strategies and opinions. We have analytically shown that the
general coexistence stability of strategy distributions for
multiclass individual game systems concerns the network
structures. We have also numerically studied the network’s
modular structural effects on the opinion dynamics, and the
transition criticality between the consensus-opinion phase
and mixed coexisting-opinions phase. The simulation results
reveal a close positive correlation between the coexistence
stability and the modularity of networks.
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